
G R A P H I C S P R O C E S S I N G
U N I T S W I T H P Y T H O N

D R . C A R L E . F I E L D S

AST 545 - Spring 2025
April 9, 2025

Graphics Processing Unit (GPU) - Overview

• designed for fast graphics
processing

• graphics are a form of arithmetic

• have gradually evolved a design
that is also useful for non-
graphics computing

• Are not standalone, work
alongside CPU (host) -
coprocessor

1

C O - P R O C E S S O R S , I N C L U D I N G G P U S

NVIDIA Ampere A100 Tensor Core GPU is the world’s most
powerful accelerator for deep learning, machine learning,

high-performance computing, and graphics.

GPUs - Memory Management

• In GPUs, the solution is to
support many more threads
with fast switching between
them.

• Because of this, memory
management is key in GPU
computing. Smaller caches!

2

C O - P R O C E S S O R S , I N C L U D I N G G P U S

Memory structure of a GPU.

GPUs - GPUs versus CPUs

• Limited cache size, datatype (size)
limited. Smaller datatypes = higher
peak performance.

3

C O - P R O C E S S O R S , I N C L U D I N G G P U S

GPUs:CPUs:

• Data exist on the CPU -
somewhere.

• Single stream of potentially
very different instructions.

• Peak performance = more
cores. More flexible cache.

• Perform well on a single or few
threads.

• GPUs are co-processors, meaning
they require data to be transferred.

• Poor performance on “traditional
codes”

• Designed to perform well on
many threads.

GPUs - GPUs versus CPUs

4

C O - P R O C E S S O R S , I N C L U D I N G G P U S

Schematic diagram of CPU and GPU.

CPU: GPU:

GPUs - Expected benefits

• Very good at doing data
parallel computing

• CUDA provides a tool for
writing code for the GPU

• Requires computation to
have “enough data
parallelism”.

• Other co-processors exist!

5

C O - P R O C E S S O R S , I N C L U D I N G G P U S

Stampede 2 at Texas Advanced Computing
Center. Uses Intel Knights Landing many-core

processors as stand alone processors.

C O - P R O C E S S O R S , I N C L U D I N G G P U S

Your target architecture can
determine your approach

CUDA Programming Model

• CUDA®: A General-Purpose Parallel
Computing Platform and
Programming Model

• Comes with a software environment
that allows developers to use C++
as a high-level programming
language

• Automatic scalability to newer GPUs

6

U T I L I Z I N G M O D E R N G P U S

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture

CUDA Programming Model - CUDA Kernels

• Functions, called kernels, that, when called, are executed N
times in parallel by N different CUDA threads

7

U T I L I Z I N G M O D E R N G P U S

CUDA Programming Model - Grids and Thread Blocks

• Kernels can be executed by
individual threads or
multiple equally-shaped
thread blocks.

• Blocks are a collection of
threads.

• A Grid is a collection of
Blocks.

10

U T I L I Z I N G M O D E R N G P U S

Schematic diagram of Thread Blocks

CUDA Programming Model - Memory Hierarchy

• Threads have access to local
memory.

• Blocks can share memory
among threads

• Grids have access to global
memory.

• Programs designed with
memory hierarchy in mind.

11

U T I L I Z I N G M O D E R N G P U S

CUDA Programming Model - Heterogeneous Computing

• CUDA model assumes GPUs
operate as co-processors.

• Requires explicit management
of data to and from device.

• CUDA Programming interface
has many options including in
Python!

12

U T I L I Z I N G M O D E R N G P U S

Diagram showing Heterogeneous Programming.

Tools leveraging the CUDA
programming model in

Python exist!

U T I L I Z I N G M O D E R N G P U S

Numba makes Python code fast (on GPUs too)

13

PA R A L L E L C O M P U T I N G W I T H G P U S

Kernel declaration:

Numba makes Python code fast (on GPUs too)

14

PA R A L L E L C O M P U T I N G W I T H G P U S

Kernel invocation:

• Depends on array size, requires some knowledge of available threads

Numba makes Python code fast (on GPUs too)

15

PA R A L L E L C O M P U T I N G W I T H G P U S

Choosing the block size:

• On the software side, the block size determines how many threads
share a given area of shared memory.

• On the hardware side, the block size must be large enough for full
occupation of execution units.

• Code will typically run but not be maximally efficient tools for
measuring efficiency and block size.

Numba makes Python code fast (on GPUs too)

16

PA R A L L E L C O M P U T I N G W I T H G P U S

Thread positioning:

• Tools for determining thread positioning.

cuDF - GPU DataFrames

21

PA R A L L E L C O M P U T I N G W I T H G P U S

• cuDF is a Python GPU DataFrame library (built on the Apache
Arrow columnar memory format) for loading, joining,
aggregating, filtering, and otherwise manipulating data

• cuDF also provides a pandas-like API

• Accelerate their workflows without going into the details of
CUDA programming

http://arrow.apache.org/
http://arrow.apache.org/

cuDF - GPU DataFrames

22

PA R A L L E L C O M P U T I N G W I T H G P U S

• workflow is fast enough on a single GPU or your data comfortably
fits in memory on a single GPU, you would want to use cuDF

• want to distribute your workflow across multiple GPUs, have more
data than you can fit in memory on a single GPU, or want to
analyze data spread across many files at once, you would want to
use Dask-cuDF.

When to use what:

Specific examples at https://docs.rapids.ai/api

The best approach will likely
be a combination of

different tools.

PA R A L L E L C O M P U T I N G W I T H G P U S

