GRAPHICS PROCESSING UNITS WITH PYTHON

DR. CARL E. FIELDS

AST 545 - Spring 2025 April 9, 2025

Graphics Processing Unit (GPU) - Overview

- designed for fast graphics processing
- graphics are a form of arithmetic
- have gradually evolved a design that is also useful for nongraphics computing
- Are not standalone, work alongside CPU (host) coprocessor

NVIDIA Ampere A100 Tensor Core GPU is the world's most powerful accelerator for deep learning, machine learning, high-performance computing, and graphics.

GPUs - Memory Management

- In GPUs, the solution is to support many more threads with fast switching between them.
- Because of this, memory management is key in GPU computing. Smaller caches!

GPUs - GPUs versus CPUs

CPUs:

- Data exist on the CPU somewhere.
- Peak performance = more cores. More flexible cache.
- Single stream of potentially very different instructions.
- Perform well on a single or few threads.

GPUs:

- GPUs are co-processors, meaning they require data to be transferred.
- Limited cache size, datatype (size) limited. Smaller datatypes = higher peak performance.
- Poor performance on "traditional codes"
- Designed to perform well on many threads.

GPUs - GPUs versus CPUs

CPU:

Schematic diagram of CPU and GPU.

GPUs - Expected benefits

- Very good at doing data parallel computing
- CUDA provides a tool for writing code for the GPU
- Requires computation to have "enough data parallelism".
- Other co-processors exist!

Stampede 2 at Texas Advanced Computing Center. Uses Intel Knights Landing many-core processors as stand alone processors.

Your target architecture can determine your approach

CUDA Programming Model

- CUDA_®: A General-Purpose Parallel Computing Platform and Programming Model
- Comes with a software environment that allows developers to use C++ as a high-level programming language

• Automatic scalability to newer GPUs

CUDA Programming Model - CUDA Kernels

 Functions, called kernels, that, when called, are executed N times in parallel by N different CUDA threads

```
// Kernel definition
__global___void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}
int main()
{
    ...
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(A, B, C);
    ...
}
```

CUDA Programming Model - Grids and Thread Blocks

- Kernels can be executed by individual threads or multiple equally-shaped thread blocks.
- **Blocks** are a collection of threads.
- A Grid is a collection of Blocks.

Schematic diagram of Thread Blocks

CUDA Programming Model - Memory Hierarchy

- Threads have access to local memory.
- Blocks can share memory among threads
- Grids have access to global memory.
- Programs designed with memory hierarchy in mind.

CUDA Programming Model - Heterogeneous Computing

- CUDA model assumes GPUs operate as co-processors.
- Requires explicit management of data to and from **device**.
- CUDA Programming interface has many options including in Python!

C Program Sequential Execution		
Serial code	Host	
Farallel kernel	Device	
Rernel044000()	Grid O	
	Block (0, 0) Block (1, 0) Block (2, 0) Block (0, 1) Block (1, 1) Block (2, 1)	
Serial code	Host	
Femilial immel	Device	
Remail(CCDDD()	Grid 1	
	Block (0, 0) Block (1, 0)	
	Block (0, 1) Block (1, 1)	
	Block (0, 2) Block (1, 2)	

Tools leveraging the CUDA programming model in Python exist!

Numba makes Python code fast (on GPUs too)

Kernel declaration:

```
@cuda.jit
def increment_by_one(an_array):
    """
    Increment all array elements by one.
    """
    # code elided here; read further for different implementations
```

Numba makes Python code fast (on GPUs too)

Kernel invocation:

threadsperblock = 32
blockspergrid = (an_array.size + (threadsperblock - 1)) // threadsperblock
increment_by_one[blockspergrid, threadsperblock](an_array)

• Depends on array size, requires some knowledge of available threads

Numba makes Python code fast (on GPUs too)

Choosing the block size:

- On the software side, the block size determines how many threads share a given area of shared memory.
- On the hardware side, the block size must be large enough for full occupation of execution units.
- Code will typically run but not be maximally efficient tools for measuring efficiency and block size.

Numba makes Python code fast (on GPUs too)

Thread positioning:

```
@cuda.jit
def increment_by_one(an_array):
    # Thread id in a 1D block
    tx = cuda.threadIdx.x
    # Block id in a 1D grid
    ty = cuda.blockIdx.x
    # Block width, i.e. number of threads per block
    bw = cuda.blockDim.x
    # Compute flattened index inside the array
    pos = tx + ty * bw
    if pos < an_array.size: # Check array boundaries
        an_array[pos] += 1</pre>
```

• Tools for determining thread positioning.

- cuDF is a Python GPU DataFrame library (built on the Apache Arrow columnar memory format) for loading, joining, aggregating, filtering, and otherwise manipulating data
- cuDF also provides a pandas-like API
- Accelerate their workflows without going into the details of CUDA programming

cuDF - GPU DataFrames RAPDS

When to use what:

- workflow is fast enough on a single GPU or your data comfortably fits in memory on a single GPU, you would want to use **cuDF**
- want to distribute your workflow across multiple GPUs, have more data than you can fit in memory on a single GPU, or want to analyze data spread across many files at once, you would want to use **Dask-cuDF**.

Specific examples at https://docs.rapids.ai/api

The best approach will likely be a combination of different tools.