GRAPHICS PROCESSING
UNITS WITH PYTHON

DR. CARL E. FIELDS

AST 545 - Spring 2025
April 9, 2025

CO-PROCESSORS, INCLUDING GPUS

Graphics Processing Unit (GPU) - Overview

* designed for fast graphics
processing

* graphics are a form of arithmetic - ="

* have gradually evolved a design e
that is also useful for non-
graphics computing

* Are not standalone, work : (
alongside CPU (host) -
COProcessor NVIDIA Ampere A100 Tensor Core GPU is the world’s most

powerful accelerator for deep learning, machine learning,
high-performance computing, and graphics.

CO-PROCESSORS, INCLUDING GPUS

=

Host memory 145

GPUs - Memory Management

work item
ofal memory

workgr'oup

* |In GPUs, the solution is to
support many more threads
with fast switching between

them.

* Because of this, memory
management is key in GPU
computing. Smaller caches!

Memory structure of a GPU.

CO-PROCESSORS, INCLUDING GPUS

GPUs - GPUs versus CPUs

CPUs: GPUs:
Data exist on the CPU - GPUs are co-processors, meaning
somewhere. they require data to be transferred.

Limited cache size, datatype (size)
limited. Smaller datatypes = higher
peak performance.

Peak performance = more
cores. More flexible cache.

Single stream of potentially Poor performance on “traditional
very different instructions. codes”

Designed to perform well on

Pertform well on a single or few
many threads.

threads.

CO-PROCESSORS, INCLUDING GPUS

GPUs - GPUs versus CPUs

Schematic diagram of CPU and GPU.

CO-PROCESSORS, INCLUDING GPUS

GPUs - Expected benefits

* Very good at doing data
parallel computing

* CUDA provides a tool for
writing code for the GPU

* Requires computation to
have "enough data
parallelism”.

* Other CO-Processors exist! Stampede 2 at Texas Advanced Computing
Center. Uses Intel Knights Landing many-core

processors as stand alone processors.

CO-PROCESSORS, INCLUDING GPUS

Your target architecture can
determine your approacn

CUDA:: A General-Purpose Parallel
Computing Platform and
Programming Mode|

Comes with a software environment
that allows developers to use C++
as a high-level programming
language

Automatic scalability to newer GPUs

<A NVIDIA.

CUDA.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture

Functions, called kernels, that, when called, are executed N
times in parallel by N different CUDA threads

// Rernel definition

- global void VecAdd(flocat* A, float* B, float* C)

{
int i = threadIdx.x;
C[i] = A[1] + B[1];

}

int main()

{

// Rernel invocation with N threads
VecAdd<<<l, N>>>(A, B, C);

UTILIZING MODERN GPUS

CUDA Programming Model - Grids and Thread Blocks

Gnrd

* Kernels can be executed by Clock 0 0| Jebock . | lock 2,9
individual threads or
| Block (@ 1) Blodk (1, 1) (2 1)
multiple equally-shaped
thread blocks. o] N
-~ ‘rf “\‘ N

Block (1, 1)

* Blocks are a collection of
threads.

* A Grid is a collection of
Blocks.

Schematic diagram of Thread Blocks

UTILIZING MODERN GPUS

CUDA Programming Model - Memory Hierarchy

Thread
; - P tiraar Nocal

memory

* Threads have access to local

memory. ety
/ i

* Blocks can share memory

Per-block shared
memory

YYYY

Rlock (1.0) Rlack (2, 0)

among threads

Block (1 1) | Black (2.1) | |

* @Grids have access to global

memaory. e Glotal memcry
Block (0, 0) Block (1, 0)
* Programs designed with MW“” """"m"” .
memory hierarchy in mind. Bock(0) | k(12

UTILIZING MODERN GPUS

CUDA Programming Model - Heterogeneous Computing

Cm
Seaen
Executio

* CUDA model assumes GPUs e

operate dS CO-Processors.

* Requires explicit management

of data to and from device. S
* CUDA Programming interface —

has many options including in
Python!

v

Diagram showing Heterogeneous

[

i

Block (0,0) HM(L.) Bluck (2, 0)
(00eeessess $95000ssssss
4 {144444343 333555939858
!
0,1)
13323333333 3005333333
SEEEELiissy

Programming. 12

UTILIZING MODERN GPUS

Tools leveraging the CUDA
orogramming model in
Python exist!

PARALLEL COMPUTING WITH GPUS

Numba makes Python code fast (on GPUs too)

2Numba

Kernel declaration:

@cuda.jit
def increment_by_one(an_array):

Increment all array elements by one.

code elided here; read further for different implementations

13

PARALLEL COMPUTING WITH GPUS

Numba makes Python code fast (on GPUs too)

2Numba

Kernel invocation:

threadsperblock = 32

blockspergrid = (an_array.size + (threadsperblock - 1)) // threadsperblock
increment_by onel[blockspergrid, threadsperblockl] (an_array)

Depends on array size, requires some knowledge of available threads

14

PARALLEL COMPUTING WITH GPUS

Numba makes Python code fast (on GPUs too)

2Numba

Choosing the block size:

* On the software side, the block size determines how many threads
share a given area of shared memory.

* On the hardware side, the block size must be large enough for full
occupation of execution units.

* Code will typically run but not be maximally efficient tools for
measuring efficiency and block size.

15

PARALLEL COMPUTING WITH GPUS

Numba makes Python code fast (on GPUs too)

2Numba

Thread positioning:

@cuda. it

def increment_by one(an_array):
Thread id in a 1D block
tx = cuda.threadIdx.x
Block i1d in a 1D grid
ty = cuda.blockIdx.x

Block width, 1.e. number of threads per block

bw = cuda.blockDim.x

Compute flattened index inside the array

pos = tx + ty *x bw

if pos < an_array.size: # Check array boundaries
an_arrayl[pas] += 1

Tools for determining thread positioning.

16

PARALLEL COMPUTING WITH GPUS

cuDF - GPU DataFrames

cuDF is a Python GPU DataFrame library (built on the Apache
Arrow columnar memory format) for loading, joining,
aggregating, filtering, and otherwise manipulating data

cuDF also provides a pandas-like AP

Accelerate their workflows without going into the details of
CUDA programming

21

http://arrow.apache.org/
http://arrow.apache.org/

PARALLEL COMPUTING WITH GPUS

cuDF - GPU DataFrames

When to use what:

workflow is tast enough on a single GPU or your data comfortably
fits in memory on a single GPU, you would want to use cuDF

want to distribute your workflow across multiple GPUs, have more
data than you can fit in memory on a single GPU, or want to

analyze data spread across many files at once, you would want to
use Dask-cuDF.

Specific examples at https://docs.rapids.ai/api ”

PARALLEL COMPUTING WITH GPUS

The best approach will likely
be a combination of
different tools.

