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Graphics Processing Unit (GPU) - Overview

• designed for fast graphics 
processing  

• graphics are a form of arithmetic  

• have gradually evolved a design 
that is also useful for non-
graphics computing 

• Are not standalone, work 
alongside CPU (host) - 
coprocessor
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NVIDIA Ampere A100 Tensor Core GPU is the world’s most 
powerful accelerator for deep learning, machine learning, 

high-performance computing, and graphics.



GPUs - Memory Management

• In GPUs, the solution is to 
support many more threads 
with fast switching between 
them.  

• Because of this, memory 
management is key in GPU 
computing. Smaller caches!
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Memory structure of a GPU. 



GPUs - GPUs versus CPUs

• Limited cache size, datatype (size) 
limited. Smaller datatypes = higher 
peak performance.
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GPUs:CPUs:

• Data exist on the CPU - 
somewhere.  

• Single stream of potentially 
very different instructions.

• Peak performance = more 
cores. More flexible cache.

• Perform well on a single or few 
threads.

• GPUs are co-processors, meaning 
they require data to be transferred. 

• Poor performance on “traditional 
codes”

• Designed to perform well on 
many threads.



GPUs - GPUs versus CPUs
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Schematic diagram of CPU and GPU. 

CPU: GPU:



GPUs - Expected benefits 

• Very good at doing data 
parallel computing 

• CUDA provides a tool for 
writing code for the GPU 

• Requires computation to 
have “enough data 
parallelism”. 

• Other co-processors exist! 
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Stampede 2 at Texas Advanced Computing 
Center. Uses Intel Knights Landing many-core 

processors as stand alone processors.  
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Your target architecture can 
determine your approach



CUDA Programming Model 

• CUDA®: A General-Purpose Parallel 
Computing Platform and 
Programming Model 

• Comes with a software environment 
that allows developers to use C++ 
as a high-level programming 
language 

• Automatic scalability to newer GPUs
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-general-purpose-parallel-computing-architecture


CUDA Programming Model - CUDA Kernels

• Functions, called kernels, that, when called, are executed N 
times in parallel by N different CUDA threads
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CUDA Programming Model - Grids and Thread Blocks

• Kernels can be executed by 
individual threads or 
multiple equally-shaped 
thread blocks. 

• Blocks are a collection of 
threads. 

• A Grid is a collection of 
Blocks.
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Schematic diagram of Thread Blocks 



CUDA Programming Model - Memory Hierarchy

• Threads have access to local 
memory.  

• Blocks can share memory 
among threads 

• Grids have access to global 
memory.  

• Programs designed with 
memory hierarchy in mind. 
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CUDA Programming Model - Heterogeneous Computing

• CUDA model assumes GPUs 
operate as co-processors. 

• Requires explicit management 
of data to and from device. 

• CUDA Programming interface 
has many options including in 
Python! 
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Diagram showing Heterogeneous Programming.



Tools leveraging the CUDA 
programming model in 

Python exist!
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Numba makes Python code fast (on GPUs too)
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Kernel declaration:



Numba makes Python code fast (on GPUs too)
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Kernel invocation:

• Depends on array size, requires some knowledge of available threads



Numba makes Python code fast (on GPUs too)
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Choosing the block size:

•  On the software side, the block size determines how many threads 
share a given area of shared memory.  

• On the hardware side, the block size must be large enough for full 
occupation of execution units. 

• Code will typically run but not be maximally efficient tools for 
measuring efficiency and block size. 



Numba makes Python code fast (on GPUs too)
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Thread positioning: 

• Tools for determining thread positioning.



cuDF - GPU DataFrames 
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• cuDF is a Python GPU DataFrame library (built on the Apache 
Arrow columnar memory format) for loading, joining, 
aggregating, filtering, and otherwise manipulating data 

• cuDF also provides a pandas-like API 

• Accelerate their workflows without going into the details of 
CUDA programming

http://arrow.apache.org/
http://arrow.apache.org/


cuDF - GPU DataFrames 
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• workflow is fast enough on a single GPU or your data comfortably 
fits in memory on a single GPU, you would want to use cuDF 

• want to distribute your workflow across multiple GPUs, have more 
data than you can fit in memory on a single GPU, or want to 
analyze data spread across many files at once, you would want to 
use Dask-cuDF.

When to use what:  

Specific examples at https://docs.rapids.ai/api



The best approach will likely 
be a combination of 

different tools.
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